Spectroscopy. X-band CW EPR experiments were performed on a E-90 Varian spectrometer. Pulsed X-band EPR and ENDOR spectra were recorded with a homebuilt spectrometer (at ETH Zūrich)⁴⁷ equipped with a bridged loop-gap resonator.⁴⁶ In the pulsed ENDOR experiments, the microwave (mw) resonator is surrounded by a solenoidal radio frequency (rf) coil that generates the rf field and serves as a mw radiation shield.49

The pulse scheme used in the ENDOR experiments¹⁹ consists of the stimulated electron spin-echo sequence, $\pi/2 - \tau - \pi/2 - T - \pi/2 - \tau$ echo, with nonselective mw pulses and a selective rf pulse of variable frequency v_{rf} and flip angle $\beta_{rf} = \pi$ applied between the second and third mw pulses (Mims-ENDOR). The following parameters were used: length of the mw $\pi/2$ pulses, $t_{\pi/2} = 30$ ns; length of the rf π pulse, $t_{rf} = 40 \ \mu$ s; rf increment, $\Delta \nu_{rf} = 10 \ \text{kHz}$; time between the first and second mw pulse, $\tau = 500$ ns (g_{\parallel}) and $\tau = 800$ ns (g_{\perp}) ; pulse repetition rate, 500 Hz.

In the electron spin-echo envelope modulation (ESEEM) experiments, both the two-pulse sequence, $\pi/2 - \tau - \pi - \tau$ - echo, and the three-pulse

(48) Pfenninger, S.; Forrer, J.; Schweiger, A.; Weiland, T. Rev. Sci. Instrum. 1988, 59, 752-760.
(49) Forrer, J.; Pfenninger, S.; Eisenegger, J.; Schweiger, A. Rev. Sci.

Instrum. 1990, 61, 3360-3367.

sequence, $\pi/2 - \tau - \pi/2 - T - \pi/2 - \tau$ - echo, with pulse lengths $t_{\pi/2}$ = 10 ns and t_{τ} = 20 ns were used. The time (τ in the two-pulse, T in the three-pulse experiment) was increased in increments of $\Delta t = 10$ ns, and time τ in the three-pulse ESEEM was fixed to 200-300 ns. ENDOR and ESEEM signals were recorded at temperatures between 10 and 20 K using a helium gas cooling system. Note that resonators with slightly different resonance frequencies have been used for the different experiments; the nuclear Zeeman frequencies of the ENDOR and ESEEM spectra may therefore not be determined from the EPR spectrum shown in Figure 4.

For the ENDOR measurements, deoxygenated toluene or toluene- d_8 solutions containing 1 (0.02 M) and α -¹³C-benzaldehyde (99.6 atom % 13 C) or benzaldehyde- d_5 respectively (0.1 M; both purchased from Stohler Isotope Chemicals) were used. For the ESEEM studies, deoxygenated toluene solutions containing 1 (0.02 M) and N-benzylidenebenzylamine (0.1 M) were prepared.

The zero-frequency component in the time domain ESEEM data was eliminated by subtracting a fitted exponential. For cosine-Fourier transform spectra, the deadtime artifacts were reduced prior to transformation by tapering the ESEEM patterns with a shifted hanning window.

Supplementary Material Available: Tables of bond distances and angles, atomic coordinates, and isotropic thermal parameters; a table collecting bonding parameters for the fragment M-O-C in X-ray characterized complexes containing η^1 -coordinated aldehydes, ketones, and esters (including literature references) (7 pages); listings of observed and calculated structure factors (8 pages). Ordering information is given on any current masthead page.

Spectroscopic Detection and Reactivity of the Chlorine Atom-Carbon Disulfide Molecular Complex

John E. Chateauneuf

Contribution from the Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556. Received June 4, 1992

Abstract: Pulse radiolysis and laser flash photolysis techniques have been used to generate and kinetically characterize the chlorine atom-carbon disulfide molecular complex (Cl^*/CS_2) in CCl_4 solution. The transient absorption spectrum of Cl^*/CS_2 has been generated from three independent Cl^{*} sources: pulse radiolysis of CCl₄, 266-nm photodecomposition of CCl₄, and photodissociation of Cl₂. An absolute rate constant of 1.7×10^{10} M⁻¹ s⁻¹ for the reaction of Cl⁺ + CS₂ was obtained from both the direct measurement of the decay of the charge-transfer band of Cl[•] in CCl₄ ($\lambda_{max} = 330$ nm) and from the formation kinetics of Cl[•]/CS₂ ($\lambda_{max} = 370$ nm; shoulder = 490 nm). The properties of Cl[•]/CS₂ are compared with those of the molecular complexes of Cl* with benzene and pyridine. The reactivity observed monitoring the Cl*/CS2 absorption band toward 2,3-dimethylbutane has also been investigated to determine the equilibrium constant (K) of the Cl^{+}/CS_{2} complex, and the value of K is compared to that determined by direct spectroscopic method. K for the Cl*/pyridine complex has also been reevaluated.

Introduction

Recently, the gas-phase reaction of chlorine atom with carbon disulfide has received considerable attention¹⁻³ due to its potential importance in atmospheric chemistry. Both the relative rate technique^{1,2} and time-resolved fluorescence³ of chlorine atom have been used to determine that chlorine atom forms a reversible adduct with carbon disulfide.

The importance of the interaction of chlorine atom with carbon disulfide in liquid-phase photochlorination reactions was first reported by Russell.4-6 Dramatic increases in selectivity in tertiary to primary hydrogen-atom abstractions were observed in the photochlorination of 2,3-dimethylbutane (DMB) in the presence of carbon disulfide⁷ or benzene.

$$CI \cdot + \sum_{DMB} \longrightarrow X_{3} \cdot + X_{1} \cdot (1)$$

In the latter case, it is now generally believed that the enhanced tertiary to primary selectivity is a direct consequence of a rapidly formed chlorine atom-benzene π -molecular complex^{8,9} (1). The

⁽⁴⁶⁾ For a selection of compounds containing disordered fluorinated substituents, see, e.g.: (a) Lindoy, L. F.; Lip, H. C.; Louie, H. W.; Drew, M. G. B.; Hudson, M. J. J. Chem. Soc., Chem. Commun. 1977, 778-780. (b) Felthouse, T. R.; Dong, T.-Y.; Hendrickson, D. N.; Shieh, H.-S.; Thompson, M. P. J. Chem. Soc. 1995, 100, 2011, (a) Kenil W. A. Berd M. R. J. Am. Chem. Soc. 1986, 108, 8201-8214. (c) Kamil, W. A.; Bond, M. R.; Willett, R. D.; Shreeve, J. M. Inorg. Chem. 1987, 26, 2829-2833. (d) Churchill, M. R.; Fennessey, J. P. Inorg. Chem. 1967, 6, 1213–1220.
 (47) Schweiger, A. In Modern Pulsed and Continuous Wave Electron Spin

⁽¹⁾ Martin, D.; Barnes, I.; Becker, K. H. Chem. Phys. Lett. 1987, 140, 195-199.

⁽²⁾ Wallington, T. J.; Andino, J. M.; Potts, A. R. Chem. Phys. Lett. 1991, 176, 103-108

⁽³⁾ Nicovich, J. M.; Shackelford, C. J.; Wine, P. H. J. Phys. Chem. 1990, 94, 2896-2903.

⁽⁴⁾ Russell, G. A. J. Am. Chem. Soc. 1957, 79, 2977-2978.

⁽⁵⁾ Russell, G. A. J. Am. Chem. Soc. 1958, 80, 4987-4996.

⁽⁶⁾ Russell, G. A. J. Am. Chem. Soc. 1958, 80, 4997-5001.

⁷⁾ Also see: Skell, P. S.; Baxter, H. N.; Taylor, C. K. J. Am. Chem. Soc. 1983, 105, 120-121.

$$\bigcirc + c_{1} \cdot = \bigcirc c_{1} \cdot (2)$$

electronic absorption spectrum of the chlorine atom-benzene π -complex was first detected by Bühler¹⁰ upon pulse radiolysis of carbon tetrachloride containing benzene. Subsequently, the reactivity of the chlorine atom-benzene π -complex has been thoroughly investigated by both classical and laser flash photolysis techniques.^{7,8,11-13} The molecular complexes of chlorine atom with pyridine¹⁴ and DMSO¹⁵⁻¹⁹ have also been observed with time-resolved spectroscopies; however, the interaction of chlorine atoms with carbon disulfide in solution has not been investigated by direct methods to date.

Herein, the absolute kinetics for the reaction of chlorine atom with carbon disulfide and the spectroscopic detection and reactivity of the Cl[•]/CS₂ complex are presented. Chlorine atom was generated by three independent methods: 355-nm laser photodissociation of molecular chlorine, 266-nm laser photodecomposition of CCl₄, and pulse radiolysis of CCl₄. Absolute kinetics were obtained by time-resolved UV-visible absorption. Spectral and kinetic characteristics of the Cl*/CS2 complex are compared with those of the Cl[•]/benzene and Cl[•]/pyridine complexes.

Experimental Section

Materials. Carbon tetrachloride (Fisher Spectranalyzed) was passed through neutral, activated (Brockmann 1) aluminum oxide (Aldrich) and distilled from K₂CO₃ (35-cm Vigreux column) prior to use. Carbon disulfide (Aldrich, HPLC grade), 2,3-dimethylbutane (Aldrich), benzene (Fisher Spectranalyzed), pyridine (Fisher), cyclohexane (Fisher), and cyclohexyl chloride (Aldrich) were all distilled prior to use. Benzene was washed with concentrated H₂SO₄, saturated NaHCO₃, and distilled H₂O and dried over CaH2 prior to distillation. High-purity molecular chloride (Matheson) was used as received.

Pulse Radiolysis. The pulse radiolysis experiments were performed using a 10-ns pulse of 8-MeV electrons from the Notre Dame Radiation Laboratory linear accelerator. The LINAC pulse radiolysis apparatus has previously been described in detail.²⁰ The doses used were ~ 500 rd/pulse as determined by thiocyanate dosimetry. Solutions were flowed through a 1-cm optical path length cylindrical Suprasil cell at a rate of 3-5 mL/min from a solution reservoir connected by either glass or BEV-A-LINE (Cole-Parmer) tubing. Unless stated otherwise, solutions were deoxygenated by bubbling with high-purity nitrogen continuously throughout the experiment.

Laser Flash Photolysis. The LFP apparatus has also been described.²¹ Briefly, the third and fourth harmonic of a Quanta Ray DCR-1 Nd:YAG

(8) See discussions in: (a) March, J. Advanced Organic Chemistry, 4th ed.; Wiley-Interscience: New York, 1992; pp 688-689. (b) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed.; VCH Verlags-gesellschaft: Weinheim, 1988; pp 181–183. (c) Ingold, K. U.; Lusztyk, J.; Raner, K. D. Acc. Chem. Res. **1990**, 23, 219–225.

(9) A long-standing proposal suggests that chlorocyclohexadienyl radical is also involved in the photochlorination selectivities.⁷ And, while it is also conceivable that the species observed by optical spectroscopy is not that responsible for the observed chlorination selectivities, until definitive experimental evidence is presented supporting this proposal, this author will invoke the more commonly referenced mechanisms, i.e., the π -molecular complex.

(10) Bühler, R. E.; Ebert, M. Nature 1967, 214, 1220-1221. Bühler, R. E. Helv. Chim. Acta 1968, 51, 1558-1571.

- (11) Bunce, N. J.; Ingold, K. U.; Landers, J. P.; Lusztyk, J.; Scaiano, J.
 C. J. Am. Chem. Soc. 1985, 107, 5464-5472.
- (12) Raner, K. D.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1989, 111, 3652-3658
- (13) Raner, K. D.; Lusztyk, J.; Ingold, K. U. J. Phys. Chem. 1989, 93, 564-570.
- (14) Breslow, R.; Brandl, M.; Hunger, J.; Turro, N.; Cassidy, K.; Krogh-[15] Dispersen, K.; Westbrook, J. D. J. Am. Chem. Soc. 1987, 109, 7204-7206.
 (15) Sumiyoshi, T.; Katayama, M. Chem. Lett. 1987, 1125–1126.
- 16) Sumiyoshi, T.; Miura, K.; Hagiwara, H.; Katayama, M. Chem. Lett.
- 1987, 1429-1430 (17) Alfassi, Z. B.; Mosseri, S.; Neta, P. J. Phys. Chem. 1989, 93,
- 1380-1385 (18) Sumiyoshi, T.; Katayama, M. Bull. Chem. Soc. Jpn. 1990, 63, 1293-1298.
- (19) Sumiyoshi, T.; Watanabe, K.; Syogen, S.; Kawasaki, M.; Katayama,
 M. Bull. Chem. Soc. Jpn. 1990, 63, 1584–1586.
 (20) Janata, E.; Schuler, R. H. J. Phys. Chem. 1982, 86, 2078-2084.
- (21) Nagarajan, V.; Fessenden, R. W. J. Phys. Chem. 1985, 89, 2330-2335.

Figure 1. UV-visible absorption spectra observed: (top) 20 ns (O) and 250 ns (●) following pulse radiolysis of CCl₄; (middle) 15 ns (O) and 100 ns (•) following 266-nm LFP of CCl₄; and (bottom) 100 ns (O) following 355-nm LFP of Cl₂ in CCl₄. Insert: typical decay observed at 330 nm.

Figure 2. Dependence of the 330-nm decay (O) and 370-nm growth (O) signals (insert) on CS₂ concentration observed following 355-nm LFP of Cl₂ in CCl₄.

(pulse width ~ 6 ns) was used for 355- and 266-nm laser excitation, respectively. A pulse 1000-W xenon lamp was used as the monitoring source and signals were digitized with a Tektronix 7912 AD. Experimental control and computer analysis were done using a VAX-11/780. The 266-nm photodecomposition of CCl₄ experiments was performed using focused perpendicular laser excitation ($\approx 9 \text{ mJ/pulse}$) into 9×6 mm² Suprasil quartz cells. Kinetic experiments were carried out using individually prepared static cells containing 2 mL of either N2-, air-, or O2-saturated solution for each concentration of substrate used. Typically 8-10 laser shots were averaged for each kinetic trace. Transient spectra were taken using a flow-cell apparatus. The 355-nm experiments were performed using the same geometrical arrangement with slightly attenuated excitation and ~8 mJ/pulse. Samples were prepared with presaturated CCl₄ with concentrations of Cl₂ adjusted to 0.6–0.8 OD at 355 nm and then jacketed with the appropriate atmosphere. Typically only one laser shot was required for each kinetic trace.

Table I. Rate Constants^a and Conditions for Reactivity toward DMB Obtained by Monitoring Chlorine Atom Molecular Complexes (Cl*/M)

		e	conditions		
M	[M] (M)	Cl [•] source ^o	(saturating gas)	$k_{\rm DMB} (M^{-1} s^{-1})^c$	ref
CS ₂	0.25	Cl ₂ /CCl ₄	N ₂	$(2.7 \pm 0.1) \times 10^5$	
CS_2	0.25	Cl_2/CCl_4	air	$(6.2 \pm 0.1) \times 10^{6}$	
CS_2	0.25	Cl_2/CCl_4	O ₂	$(1.7 \pm 0.05) \times 10^7$	
CS_2	0.25	PR/CCl₄	N_2	$(1.7 \pm 0.1) \times 10^7$	
CS_2	0.25	LFP/CCl ₄	N_2	$(2.1 \pm 0.04) \times 10^7$	
CS_2	0.25	LFP/CCl ₄	air	$(2.1 \pm 0.03) \times 10^7$	
CS_2	0.25	LFP/CCl ₄	O ₂	$(1.8 \pm 0.1) \times 10^7$	
CS_2	0.025	LFP/CCl ₄	air	$(1.1 \pm 0.1) \times 10^7$	
CS_2	0.005	LFP/CCl ₄	air	$(5.1 \pm 0.6) \times 10^{6}$	
pyridine	0.25	Cl_2/CCl_4	air	2.6×10^{5}	14
pyridine	0.25	PR/CCl ₄	N_2	$(3.8 \pm 0.6) \times 10^{5}$	
pyridine	0.25	Cl_2/CCl_4	air	$(3.8 \pm 0.5) \times 10^5$	
pyridine	0.25	Cl_2/CCl_4	O ₂	$(2.9 \pm 0.5) \times 10^{5}$	
benzene	$\sim 10^d$	Bu'OOBu'/HCl	HCl	4.6×10^{7}	11
benzene	0.25	Cl_2/CCl_4	air	4.4×10^{7}	14
benzene	0.25	PR/CCl ₄	N_2	$(1.6 \pm 0.1) \times 10^{8}$	
benzene	0.025	LFP/CCl₄	N_2	$(1.7 \pm 0.1) \times 10^{8}$	
benzene	0.005	LFP/CCl₄	N ₂	$(1.9 \pm 0.2) \times 10^{8}$	
benzene	0.0025	LFP/CCl ₄	N ₂	$(1.3 \pm 0.2) \times 10^8$	

^aRate constants were measured in this work unless otherwise referenced. ^bCl₂/CCl₄ = 355-nm LFP of Cl₂ in CCl₄; PR/CCl₄ = pulse radiolysis of CCl₄; LFP/CCl₄ = 266 nm LFP of CCl₄. ^cErrors represent $\pm 2\sigma$. ^dBenzene as solvent.

Ground-state UV-vis spectra were taken on a Perkin-Elmer 3840 diode array spectrophotometer using 1-cm Suprasil cuvettes. All experiments were performed at (21 ± 1) °C.

Results

Pulse radiolysis of pure N₂-saturated CCl₄ results in the transient absorption spectra observed in Figure 1 (top). The spectra were taken at 20 and 250 ns following irradiation, demonstrating the independent nature of the two absorption bands (see Discussion). The UV absorption band, $\lambda_{max} = 330$ nm, and the broad visible band are also observed at 15 and 100 ns, respectively, upon 266-nm LFP of neat N₂-saturated CCl₄, Figure 1 (middle). Figure 1 (bottom) is the absorption spectrum observed 100 ns following 355-nm photodissociation of Cl_2 in CCl_4 . The decay of the 330-nm signal observed in the Cl₂ photolysis, Figure 1 (bottom, insert), rapidly becomes pseudo-first-order with added CS_2 (Figure 2, insert). In the presence of CS_2 a secondary transient absorption ($\lambda_{max} = 370$ nm; shoulder = 490 nm) is observed to "grow-in" at the expense of the 330-nm signal (Figure 2, insert). Measuring the dependence of the observed rate constant, k_{ob} , of the 330-nm decay and the 370-nm growth, on CS₂ concentration, 0.2-6.4 mM (Figure 2), gave bimolecular rate constants, $k_{\rm bi}$, of (1.7 ± 0.1) and (1.8 ± 0.1) × 10¹⁰ M⁻¹ s⁻¹, respectively. k_{bi} were determined according to $k_{ob} = k_0 + k_{bi}[CS_2]$, where k_0 represents the rate constant for all modes of decay of the 330-nm transient in the absence of CS_2 . Errors in all k_{bi} reported represent $\pm 2\sigma$.

In the presence of 0.25 M CS₂, Cl₂ photolysis in CCl₄, 266-nm photolysis of CCl₄, and pulse radiolysis of CCl₄ resulted in the transient absorption spectra having $\lambda_{max} = 370$ nm, shoulder = 490 nm, Figure 3: A, B, and C, respectively. Each spectrum was taken at ca. 800 ns following the excitation pulse and have been normalized for direct comparison. The time profile (Figure 3, insert) taken at 370 nm from spectrum B, however, is representative of the time profiles observed in each experiment and throughout each spectrum.

The transient decay in Figure 3 became pseudo-first-order with the addition of DMB. Monitoring at 370 nm, the dependence of k_{ob} with added DMB was measured in N₂-, air-, and O₂-saturated CCl₄. Figure 4A demonstrates the results observed in the 355-nm photolysis of Cl₂ in CCl₄ containing 0.25 M CS₂. Rate constants obtained by monitoring the Cl⁺/CS₂ complex (as well as the Cl⁺/pyridine and Cl⁺/benzene complexes) are summarized in Table I. For comparison the results obtained in the pulse radiolysis of N₂-saturated CCl₄ containing 0.25 M CS₂ are also presented in Figure 4A. Figure 4B demonstrates the results observed in the 266-nm photolysis of CCl₄ containing 0.25 M CS₂. DMB rate constants were also determined in air-saturated CCl₄ containing 25 mM and 5 mM CS₂, Table I (vide infra).

Figure 3. Transient spectra of Cl°/CS_2 observed following: (A) Cl_2 LFP in CCl₄; (B) 266 nm CCl₄ LFP; and (C) pulse radiolysis of CCl₄, each containing 0.25 M CS₂. Insert: decay observed at 370 nm in spectrum B.

Figure 4. Dependence of k_{ob} measured at 370 nm on DMB concentration in: (A) Cl₂ LFP in (\odot) O₂-, (\blacksquare) air-, and (O) N₂-saturated CCl₄ and in the pulse radiolysis (+) of CCl₄ containing 0.25 M CS₂; (B) 266-nm LFP of CCl₄ containing 0.25 M CS₂ in (\blacksquare) O₂-, (\odot) air-, and (+) N₂saturated solutions.

An experiment clearly demonstrating a Cl[•] radical chain process was also performed. Monitoring 200 ns after 355-nm LFP of 0.7 OD Cl₂ in C₆H₁₂ resulted in a spectrum (Figure 5) in which the depletion of Cl₂ and the production of C₆H₁₁Cl is readily observed (vide infra).

The effect of DMB on the Cl[•]/pyridine complex was reexamined. The Cl[•]/pyridine complex was generated by both 355-nm LFP of 0.8 OD Cl₂ in CCl₄ containing 0.25 M pyridine and by pulse radiolysis of N₂-saturated CCl₄ containing 0.25 M pyridine.

Figure 5. Transient absorption spectrum observed 200 ns following 355-nm LFP of 0.7 OD Cl₂ in cyclohexane. Inserts: (top) time dependence on Δ OD observed at 280 nm and 340 nm; (bottom) ground-state absorption spectra of neat cyclohexyl chloride and Cl₂ in cyclohexane.

Figure 6. Dependence of k_{ob} on [DMB] for the 310-nm decay observed following: (O) 266-nm LFP of CCl₄ containing 0.025 M benzene; and (\bullet) pulse radiolysis of CCl₄ containing 0.25 M benzene.

 $k_{\rm DMB}$ (Table I) were obtained by monitoring the Cl[•]/pyridine absorption at 370 nm in the LFP experiments with 15-500 mM DMB in O₂- and air-saturated CCl₄. The pulse radiolysis experiment was done in N₂-saturated CCl₄ and [DMB] = 5-1100 mM.

The effect of DMB on the Cl[•]/benzene complex^{11,12,14} was also reexamined. The Cl[•]/benzene complex was generated by pulse radiolysis of N₂-saturated CCl₄ containing 0.25 M benzene, and by 266-nm LFP of N₂-saturated CCl₄ containing 0.025 M benzene. Monitoring Cl[•]/benzene at 310 nm, the dependence on k_{ob} with 0.9–135 mM DMB in the pulse radiolysis experiment, and with 7.7–114 mM DMB in the LFP experiment, is presented in Figure 6 and Table I. DMB rate constants were also obtained in 266-nm LFP experiments containing 5 and 2.5 mM benzene (Table I).

Discussion

Generation of Chlorine Atom. Pulse Radiolysis of CCl₄. There is no doubt that pulse radiolysis of CCl₄ is an excellent source of Cl⁺, as demonstrated by Bühler¹⁰ in the ready detection of the Cl⁺/benzene π -complex. In fact, yields of Cl⁺ as high as 8.3 atoms/100 eV have been reported in the pulse radiolysis of pure CCl₄.²² There has, however, been several assignments²³ of the two major absorption bands observed in the pulse radiolysis of CCl_4 (Figure 1, top), and therefore the radiolysis of CCl_4 will be discussed in some detail.

In a simplified scheme, the radiolysis of CCl_4 can be seen to occur by three major pathways. Initial ionization of solvent results in the ejection of an electron, and the solvent derived radical cation:

$$\operatorname{CCl}_4 \longrightarrow \operatorname{CCl}_4^{*+} + e^-$$
 (3)

The ejected electron is rapidly captured by dissociative electron attachment to solvent

$$e^{-} + CCl_4 \rightarrow CCl_4^{*-} \rightarrow CCl_3^{*} + Cl^{-}$$
(4)

and the solvent derived radical cation undergoes rapid fragmentation.

$$\operatorname{CCl}_4^{*+} \to \operatorname{CCl}_3^+ + \operatorname{Cl}^* \tag{5}$$

It is now generally believed²³ that the visible band observed upon pulse radiolysis of CCl₄ is due to some form of CCl₃⁺, most likely associated with Cl⁻. Unfortunately, far less activity has been devoted to the identification of the 330-nm band. The two most prevalent assignments in the literature²³ are to CCl₄⁺⁺ and :CCl₂ (dichlorocarbene). The assignment to CCl₄⁺⁺ has been suspect, however, considering CCl₄⁺⁺ is predicted to be extremely unstable and possess a subnanosecond lifetime.^{23b} Recently, CCl₄⁺⁺ was reported to decay within 100 ps as determined by picosecond pulse radiolysis.²⁴ The assignment of the 330-nm band to :CCl₂, generated from an highly excited state of CCl₄ (eq 6),

$$\operatorname{CCl}_4 \longrightarrow \operatorname{CCl}_4^{**} \to :\operatorname{CCl}_2 + 2\operatorname{Cl}^* \text{ or } \operatorname{Cl}_2$$
 (6)

was first proposed by Bühler.²⁵ It should be noted that this assignment has always been tentative.^{23b} This assignment has, however, unfortunately propagated through the literature^{23a,24} without experimental support.

266-nm Photolysis of CCl₄ and Photodissociation of Cl₂. Mataga and co-workers²⁶ demonstrated that picosecond 266-nm multiphoton LFP of CCl₄ also results in the visible absorption band observed in the radiolysis of CCl₄. Washio et al.²⁷ first indicated that both the UV and visible bands were generated upon 266-nm nanosecond LFP of CCl₄. Again the 330-nm band was attributed to :CCl₂.

More recently, it has been demonstrated²⁸ that the 330-nm band observed upon pulse radiolysis and 266-nm LFP of CCl₄ are spectrally and kinetically identical. For example, rate constants for the reaction of the 330-nm transient with cyclopentene of 1.0 and $1.1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$ were obtained from pulse radiolysis and 266-nm LFP, respectively. It was also demonstrated²⁸ that 355-nm photodissociation of Cl₂ in CCl₄ (eq 7) generated the 330-nm band

$$Cl_2 \xrightarrow{h_{\nu}} 2Cl^* \xrightarrow{CCl_4} 2CCl_4 \xrightarrow{\delta^-} Cl^*$$
 (7)

(Figure 1, bottom) and that this transient species is kinetically identical with those generated via radiolysis and 266-nm LFP. Further investigations of reaction 7 in several halogenated solvents has resulted in the identification and assignment of the 330-nm band observed in CCl₄ to a 1:1 solvent charge-transfer (CT) transition of chlorine atom.²⁹

Finally, the assignment of the 330-nm band to : CCl_2 may fully be dismissed by comparison of the reactivity of the 330-nm transient with both the previously known relative rate data³⁰ and the recently obtained absolute kinetics³¹ of : CCl_2 in solution.

- (29) Chateauneuf, J. E. Chem. Phys. Lett. 1989, 164, 577-580.
- (30) See: Moss, R. A. Acc. Chem. Res. 1980, 13, 58-64. Moss, R. A. Acc. Chem. Res. 1989, 22, 15-21.
- (31) Chateauneuf, J. E.; Johnson, R. P.; Kirchhoff, M. M. J. Am. Chem. Soc. 1990, 112, 3217-3218.

⁽²²⁾ Bibler, N. E. J. Phys. Chem. 1971, 75, 25-30.

⁽²³⁾ For summaries of published assignments, see: (a) Emmi, S. S.;
Beggiato, G.; Casalbore-Miceli, G. Radiat. Phys. Chem. 1989, 33, 29-37. (b)
Bühler, R. E. Radiat. Phys. Chem. 1983, 21, 139-146.

⁽²⁴⁾ Washio, M.; Yoshida, Y.; Hayashi, N.; Kobayashi, H.; Tagawa, S.;
Tabata, Y. Radiat. Phys. Chem. 1989, 34, 115-120.
(25) Ha, T.-K.; Gremlich, H. U.; Bühler, R. E. Chem. Phys. Lett. 1985,

⁽²⁵⁾ Ha, T.-K.; Gremlich, H. U.; Bühler, R. E. Chem. Phys. Lett. 1985, 65, 16-18.

⁽²⁶⁾ Miyasaka, H.; Masuhara, H.; Mataga, N. Chem. Phys. Lett. 1979, 118, 459-463.

⁽²⁷⁾ Washio, M.; Tagawa, S.; Tabata, Y. Radiat. Phys. Chem. 1983, 21, 239-243.

⁽²⁸⁾ Chateauneuf, J. E. J. Am. Chem. Soc. 1990, 112, 442-444.

Reaction of Cl[•] with CS₂. Identification of the CT absorption band of Cl[•] in CCl₄ ($\lambda_{max} = 330$ nm) now allows for the direct measurement of Cl[•] reactivity from three relatively "clean" independent sources. Even though each source has some experimental limitations (vide infra), a combination of the three allows for a comprehensive understanding of Cl[•] reactivity in solution.

Bimolecular rate constants of Cl[•] may be accurately measured under appropriate conditions. These conditions specifically require no regeneration of Cl[•] due to chain processes (see discussion below) and "clean" reagents. The lifetime $(1/k_{ob})$ of Cl[•] is crucially dependent on CCl₄ purity due to the high and indiscriminate reactivity of Cl[•]. Therefore, it is necessary to rigorously purify CCl₄ as well as quenching substrates, prior to use (see Experimental Section) in order to observe Cl[•] in the nanosecond time regime and to extend the dynamic range in which Cl[•] kinetics may be obtained.

The reactivity of Cl[•] toward CS₂ could be monitored at 330 nm at low CS₂ concentrations following 355-nm photolysis of 0.6 OD Cl₂ in CCl₄. Congruent growth of the reaction product at 370 nm (Figure 2, insert) could also be used to "probe" Cl[•] kinetics. Inconsequentially, the absolute values of k measured at 370 nm are slightly larger than those measured at 330 nm (Figure 2) due to spectral overlap with the CT Cl[•] band. The bimolecular rate constants obtained 1.7 and 1.8×10^{10} M⁻¹ s⁻¹, are identical within experimental error. A similar experiment was performed following 266-nm LFP of CCl₄ containing 0.5–4.5 mM CS₂ yielding bimolecular rate constants of (2.1 ± 0.1) and $(2.9 \pm 0.2) \times 10^{10}$ M⁻¹ s⁻¹ when observed at 330 and 370 nm, respectively. The absolute kinetics measured are assigned to the formation of the Cl[•]/CS₂ molecular complex (eq 8).

$$Cl^{\bullet} + CS_2 \rightleftharpoons CS_2^{\delta^+} \to Cl^{\bullet\delta^-}$$
(8)

The UV-visible absorption spectrum of Cl[•]/CS₂ is observed (Figure 3) following generation of Cl[•] from each source described above in the presence of 0.25 M CS₂. Under these conditions the complex is formed within the excitation pulse and possesses a multi-microsecond lifetime (Figure 3, insert). This transient complex is assigned to the species responsible for the enhanced tertiary/primary selectivity reported to range from $33^{5,8b}$ to 107^7 in the photochlorination of DMB in the presence of CS₂.

Apparent Cl[•]/CS₂ Reactivity toward DMB. Cl₂ Photolysis and the Radical Chain Process. In hopes of further characterizing the Cl[•]/CS₂ complex, the kinetics of the Cl[•]/CS₂ absorption³² toward DMB has been investigated. A strong dependence on O_2 concentration was observed on rate constants obtained by monitoring Cl^{\bullet}/CS_2 at 370 nm in the Cl_2 photolysis in a 0.25 M CS_2/CCl_4 solution with added DMB (Figure 4A). The apparent rate constant in N₂-saturated solution was $2.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ whereas, rate constants of 6.2 \times 10⁶ M⁻¹ s⁻¹ and 1.7 \times 10⁷ M⁻¹ s⁻¹ were obtained in solutions containing air and O₂, respectively. A similar O_2 dependence has also been observed^{11,12} with the Cl[•]/benzene π -complex and is attributed to replenishing Cl[•] within the decay time of the complex through a radical chain process. Clear evidence of Cl[•] regeneration is observed in the N₂-saturated plot (Figure 4A) where, at high [DMB] k appears to decrease. In fact, a small end of trace "bleach", i.e., negative ΔOD , is observed in the decay traces at these concentrations (vide infra).

A dramatic demonstration of the radical chain process can be seen in the photolysis of Cl_2 in neat cyclohexane. LFP of Cl_2 in deaerated cyclohexane results in an irreversible "bleach" when monitoring within the ground-state absorption band of Cl_2 (λ_{max} = 340 nm) (Figure 5). The bleach *appears* to occur with simple first-order kinetics³³ (Figure 5, insert) at 340 nm. Monitoring at 280 nm, an absorption signal is observed to "grow in" with kinetics similar to the 340-nm bleach. A comparison of the ground-state absorption spectra (Figure 5, insert) with the Scheme I

$$Cl_2 \xrightarrow{hv} 2Cl^{\bullet}$$

$$Cl^{\bullet} + R - H \longrightarrow HCl + R^{\bullet}$$

$$R^{\bullet} + Cl_2 \longrightarrow RCl + Cl^{\bullet}$$

$$R^{\bullet} + O_2 \longrightarrow RO_2^{\bullet}$$

Scheme II

Cl[•] + benzene
0.25 M

$$K_{-1}$$

DMB
 K_{-1}
 MB
 $K_{apparent} = (4.4 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1}) (\text{ref. 14})$
 $K_{apparent} = 1.6 \times 10^{8} \text{ M}^{-1} \text{ s}^{-1}$
Cl[•] + pyridine
 K_{-1}
 MB
 K_{-1}
 MB
 K_{-1}
 K_{-1}
 K_{-1}
 MB
 K_{-1}
 $K_{$

spectrum observed following LFP (Figure 5) demonstrates that the "bleach" coincides with depletion of Cl_2 , and the growth with the radical chain product, cyclohexyl chloride, according to Scheme I. LFP in the presence of O_2 results in competitive trapping of R° and chain inhibition. This is readily observed in an increase in the rate of growth and rate of bleach at 280 and 340 nm, respectively, and an overall decrease in ΔOD with added O_2 . Therefore, when monitoring Cl°/CS₂, the change in k_{DMB} with varying O_2 concentrations is a ramification of the degree of involvement of the radical chain process. The potential for Cl° regeneration is greatest at high concentrations of DMB (and Cl₂) and at low concentrations of O_2 .

Pulse Radiolysis and 266-nm LFP. Upon completion of the primary processes in the pulse radiolysis of CCl₄, there is virtually no chance of Cl[•] regeneration, and a k_{DMB} of $1.7 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ was obtained monitoring the Cl[•]/CS₂ absorption in N₂-saturated CCl₄. Similar rate constants of 1.8, 2.1, and 2.1 × $10^7 \text{ M}^{-1} \text{ s}^{-1}$ were obtained in O₂-, air-, and N₂-saturated CCl₄ in the 266-nm LFP experiments (Figure 4B). The independence of k_{DMB} on [O₂] indicates there is also no regeneration of Cl[•] when using this Cl[•] source. The agreement between the pulse radiolysis and Cl₂ photolysis experiments in O₂-saturated CCl₄ (Figure 4) should also be noted. It is apparent that under the conditions given the [O₂] is sufficiently high that there is little or no contribution of the radical chain process to k_{DMB} . Similar results have been observed with the Cl[•]/pyridine complex¹⁴ in the presence of O₂ (vide infra).

For direct comparison with the observed Cl[•]/CS₂ reactivity, the reactivity of "free" Cl[•] toward DMB has been measured. Pulse radiolysis and 266-nm LFP of CCl₄ resulted in $k_{\text{DMB}} = (6.8 \pm 0.5)$ and $(7.6 \pm 0.7) \times 10^9$ M⁻¹ s⁻¹, respectively, when directly monitoring Cl[•] at 330 nm.

Determination of Equilibrium Constants (K). K of Cl[•]/Benzene and Cl[•]/Pyridine. Ingold and co-workers have determined $K = 200 \text{ M}^{-1}$ for the Cl[•]/benzene complex. K was obtained from a detailed kinetic analysis of selectivity in the photochlorination of DMB in the presence and absence of benzene. The relative reactivities obtained, and in turn K, were placed on an absolute scale by the LFP determination of k for the reaction of the Cl[•]/benzene *complex* with DMB in benzene with a nonregenerative Cl[•] source, and $k = 6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ for Cl[•] with benzene.

In their determination of K for the Cl[•]/pyridine complex, Breslow and co-workers¹⁴ have pointed out that at low concentrations of complexing substrate (e.g., 0.25 M) the transient decay of a fully formed Cl[•] molecular complex primarily represents the dissociation of the complex to "free" Cl[•] which is then rapidly

⁽³²⁾ The kinetics measured from the *absorption band* of the Cl^{*} molecular complex toward DMB does not necessarily reflect the reactivity of the complex itself (see discussion on equilibrium constants).

⁽³³⁾ Chain reaction kinetics are, of course, more complicated. See, for example: Espenson, J. H. Chemical Kinetics and Reaction Mechanisms; McGraw-Hill: New York, 1981; pp 140–142.

Scheme III

scavenged by DMB. Therefore, having determined a near-diffusion-controlled k for Cl^* + pyridine by Stern-Volmer analysis, they obtained $K_{\text{pyridine}} = 34\,000 \text{ M}^{-1}$ by $K_{\text{pyridine}} = K_{\text{benzene}} \times$ $k_{\rm DMB}$ (benzene)/ $k_{\rm DMB}$ (pyridine) and Scheme II.

To avoid confusion with k_{DMB} of the complexes, k_{apparent} is used in Schemes II and III to denote the rate constants obtained by monitoring the absorption band of the complexes at low concentrations of complexing substrate (vide supra).

Subsequent to the report of Breslow et al.,¹⁴ Raner, Lusztyk, and Ingold¹² indicated that the radical chain process contributes to k_{DMB} when Cl_2 is used as the Cl^* source, even in O_2 -saturated solution. Therefore, before applying the method described above to determine K for Cl°/CS_2 , the $Cl^{\circ}/benzene$ and $Cl^{\circ}/pyridine$ systems were reinvestigated.

Agreement in k_{DMB} for Cl[•]/pyridine determined in 266-nm LFP in O₂- and air-saturated CCl₄ (2.9 and 3.8×10^5 M⁻¹ s⁻¹) and in pulse radiolysis of N2-saturated CCl4 containing 0.25 M pyridine $(3.8 \times 10^5 \text{ M}^{-1} \text{ s}^{-1})$ indicated that accurate rate constants could be obtained when Cl₂ was used as the Cl[•] source in the presence of O₂, as previously described.¹⁴ This was not the case, however, for the Cl[•]/benzene complex. A $k_{\text{DMB}} = 4.4 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ was reported¹⁴ for 355-nm LFP of Cl₂ in CCl₄ containing 0.25 M benzene. In the absence of Cl* regeneration, pulse radiolysis of CCl_4 containing 0.25 M benzene resulted in $k_{DMB} = 1.6 \times 10^8$ $M^{-1} s^{-1}$, and 266-nm LFP of CCl₄ containing 0.025 M benzene resulted in $k_{DMB} = 1.7 \times 10^8 M^{-1} s^{-1}$ (Figure 6). The use of a lower [benzene] in the LFP experiment was due to benzene absorption at the laser wavelength. The relative increase in k_{ob} at lower [benzene] (Figure 6) is a result of a shift in equilibrium to the side of free Cl[•] in the equation present in the top of Scheme II. Nevertheless, identical $k_{\rm bi}$ for DMB were measured at high and low [benzene], which demonstrated the reactivity observed by monitoring the absorption band of the complex does not, indeed, represent reactivity of the complex itself. For comparison, Ingold et al.¹¹ have measured k_{DMB} of the *complex* in benzene solution to be $k_{\text{DMB}} = 4.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$.

The k_{DMB} of the Cl[•]/benzene absorption band determined by Breslow et al.¹⁴ is nearly an order of magnitude slower than that determined in this work, because of the involvement of the radical chain process. As a result, K for the Cl[•]/pyridine complex should be reevaluated to $K = 123000 \text{ M}^{-1}$.

K of Cl'/CS₂. The equilibrium constant of the Cl'/CS₂ complex was determined using the above method, as outlined in Scheme III, and the current value of k_{DMB} for Cl[•]/benzene, which is not contaminated by Cl[•] regeneration. Accurate values of k_{DMB} for quenching of the Cl°/CS_2 absorption band were obtained in 0.25 M CS₂/CCl₄ solution when pulse radiolysis and 266-nm LFP were used as the Cl[•] source and in O₂-saturated CCl₄ when Cl₂ was used as the Cl[•] precursor (Figure 4). Again similar values of k_{DMB} were obtained when lower $[CS_2]$, e.g., 5 and 2.5 mM, were used. Therefore, using $k_{DMB} = 1.7 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ results in $K = 1900 \text{ M}^{-1}$ for the Cl⁺/CS₂ molecular complex. Direct Determination of K. Since it is possible to directly

monitor the Cl[•] absorption, kinetic analysis of eq 9 indicates that it should be possible to directly determine K.

$$Cl^{\bullet} + CS_2 \xrightarrow{k_1 \atop k_{-1}} Cl^{\bullet} / CS_2$$
 (9)

The rate of complex formation is represented as:

$$d[Cl^{*}]/dt = -k_{1}[Cl^{*}][CS_{2}] + k_{-1}[Cl^{*}/CS_{2}]$$

However, since the experiment is performed under pseudo-firstorder conditions, i.e., $[CS_2] \gg [Cl^*]$, the kinetic scheme may be

Figure 7. Comparison of normalized spectra of: (•) the Cl*/benzene complex observed 100 ns following 355-nm LFP of Cl_2 in benzene; (O) the Cl^{*}/CS₂ complex as generated in Figure 2c; and the Cl^{*}/pyridine complex (insert) observed 1 µs following 355-nm LFP of 0.8 OD Cl₂ in CCl₄ containing 0.25 M pyridine.

considered as two opposing first-order reactions.³⁴ k_{ob} is directly obtained by monitoring the $\triangle OD$ of Cl[•] with respect to time ([Cl[•]] \propto OD 330 nm) in the presence of CS₂, and

$$k_{\rm ob} = -\frac{d \ln \left([Cl^*] - [Cl^*]_{\infty} \right)}{dt} = k_1 \ [CS_2] + k_{-1}$$

Therefore, the quenching plot presented in Figure 2 should yield k_1 as the slope and k_{-1} as the intercept. As a result, $K = 1.7 \times$ $10^{10} \text{ M}^{-1} \text{ s}^{-1}/7.2 \times 10^{6} \text{ s}^{-1} = 2360 \text{ M}^{-1}$ which is in excellent agreement with the value obtained in the DMB experiments.

This technique was not applicable to the pyridine complex owing to strong overlap in the absorption band of Cl[•] with the complex (Figure 7, insert). The technique was attempted, however, with the Cl[•]/benzene complex by measuring the growth of the complex at 490 nm³⁵ following 355-nm LFP of Cl₂ in CCl₄ containing 1.7-11.2 mM benzene. It should be noted that measuring growth kinetics in this dynamic range is not very reliable; nevertheless, the resultant quenching plot yielded $K = (1.3 \pm 0.2) \times 10^{10} \text{ M}^{-1}$ $s^{-1}/(6.9 \pm 0.2) \times 10^{7} s^{-1} = 188 M^{-1}$.

Comparison of Cl' Complexes. The degree of interaction of Cl^{\cdot} with benzene, CS₂, and pyridine can readily be seen in the tertiary/primary selectivity observed in the photochlorination of DMB.^{7,14} In the presence of 4 M complexing agent and at low [DMB] (<0.1 M), tertiary/primary ratios are reported to be ca. 50/1, 100/1, and 200/1 for the benzene,⁷ CS₂,⁷ and pyridine¹⁴ complexes, respectively.

The reactivity observed for the Cl*/benzene complex is generally believed to reflect that of a π -molecular complex.⁸ A combination of selectivity, LFP, and computational results led Breslow et al.¹⁴ to assign to Cl[•]/pyridine complex to a N-Cl σ -type adduct. This assignment has recently been verified from the matrix isolation EPR spectrum of the three-electron-bond intermediate.³⁶ The Cl[•]/CS₂ complex has also been described as a σ -type complex^{8b} which would be formed by Cl[•] attack on CS₂ carbon, as represented in eq 10.

A recent computational study³⁷ (Hartree-Fock 3-21G(*) level) has derived a similar C, structure having one C-S and one C-S bond; however, a C_{2v} structure possessing distances intermediate

(37) Marshall, P. THEOCHEM 1991, 82, 309-319.

⁽³⁴⁾ See ref. 33, pp 45-48.
(35) The UV band of Cl¹/benzene could not be used for this purpose owing to overlap with the Cl*/CCl4 CT band.

⁽³⁶⁾ Abu-Raqabah, A.; Symons, M. C. R. J. Am. Chem. Soc. 1990, 112, 8614-8615.

between typical C-S single and double bonds was also suggested. In addition it was reported that no evidence was found for Cl* bonding at alternative sites.

It is beyond the scope of this investigation to determine the structural nature of the Cl^{\bullet}/CS_2 complex. It is, however, interesting to compare the UV-visible absorption spectra of the Cl* benzene, CS_2 , and pyridine complexes (Figure 7) and note the dramatic resemblance of the Cl°/CS_2 spectrum to that of the π -benzene complex. The equilibrium constants determined in this work³⁸ do confirm the strength of interaction of Cl[•] with CS_2 to

(38) It should be noted that considerable error may still be associated with the absolute values of K determined by comparison with the 200 M^{-1} value for Cl^{*}/benzene if k_{bi} for Cl^{*} + benzene determined in this work represents a more accurate measurement.

be intermediate between the π -benzene and σ -pyridine complexes, i.e., 200 $M^{-1} > 1900 M^{-1} > 123000 M^{-1}$.

Conclusions

The reactivity of Cl[•] toward CS_2 to form a reversible $Cl^{•}/CS_2$ molecular complex has been investigated by time-resolved pulse radiolysis and LFP techniques. The equilibrium constant of the Cl^{*}/CS_{2} complex has been determined and is compared to that of the Cl[•]/benzene π -complex and a reevaluated K for the Cl[•]/pyridine σ -complex.

Acknowledgment. The work described herein was supported by the Office of Basic Energy Sciences of the Department of Energy. This is Contribution No. NDRL-3502 from the Notre Dame Radiation Laboratory.

Determination of Metal-Hydride and Metal-Ligand (L = CO, N_2) Bond Energies Using Photoacoustic Calorimetry[†]

Simon T. Belt, J. C. Scaiano,* and Michael K. Whittlesey

Contribution from the Department of Chemistry, University of Ottawa, Ottawa K1N 6N5, Canada. Received July 23, 1992

Abstract: Photoacoustic calorimetry has been used to determine the M-H mean bond dissociation energies in $Ru(dmpe)_2H_2$ $(dmpe = Me_2PCH_2CH_2PMe_2)$ and $H_2IrCl(CO)(PPh_3)_2$ (63.5 ± 2.0 and 64.0 ± 1.0 kcal mol⁻¹, respectively). The quantum yield for loss of H₂ from the ruthenium dihydride complex has been measured by transient actinometry as 0.85 ± 0.05 . Ru(dmpe)₂ is an unsolvated intermediate and reacts with CO and N_2 to form $Ru(dmpe)_2CO$ and $Ru(dmpe)_2N_2$. By measuring the enthalpies of these reactions and utilizing the Ru-H mean bond dissociation energy, the Ru-CO and Ru-N₂ bond energies have been determined (43.0 \pm 2.0 and 18.8 \pm 2.0 kcal mol⁻¹, respectively).

Introduction

Transition metal hydride complexes represent an important class of organometallic compounds because of their ability to function in a variety of catalytic and stoichiometric processes.¹ For such processes to be considered in any detail, a knowledge of both kinetic and thermodynamic factors is desirable. Although kinetic studies regarding metal hydride forming/breaking processes have received constant attention,² there is a notable paucity of accurate values for M-H bond enthalpies in the literature, a fact which arises from the difficulty in making such measurements.³ Isolated examples have employed kinetic measurements,⁴ conventional solution calorimetry,⁵ and, more recently, electrochemical cycles.⁶

Photoacoustic calorimetry (PAC) has received considerable attention and has been used to examine the energetics of a host of biochemical, organic, and organometallic reactions.⁷ The PAC experiment detects, by way of the resulting thermal expansion of the solvent, the heat released into solution from reactions initiated by absorption of a laser pulse. Provided that the mechanism and the quantum yield for the photochemical reaction are well defined, the enthalpy changes due to assigned chemical processes can be evaluated. In many cases, this overall enthalpy change may be attributed to the cleavage and/or formation of specific bonds.

In the field of organometallic photochemistry, studies have concentrated on determining the metal-carbonyl bond energies in the group 6 hexacarbonyl complexes $M(CO)_6$ (M = Cr, Mo, W) and the energetics of the subsequent reaction between $M(CO)_5$ and alkane solvents.⁸ The initial photodissociation of CO from $Cr(CO)_6$ and the ensuing solvent coordination to $Cr(CO)_5$ occurs in less than 25 ps.⁹ The replacement of CO in Cr(CO)₆ by

heptane is endothermic by 27 kcal mol⁻¹ and yields a value for the chromium-solvent interaction of 9.8 kcal mol^{-1,10} In the case of a more coordinating medium (Et₃SiH), the chromium-solvent interaction was measured to be 21 kcal mol^{-1,11} Although this solvation effect is itself of primary significance, it is precisely this phenomenon which can be an underlying problem in evaluating not only the absolute bond energies of photolabile ligands, but also the energetics of subsequent reactions between organometallic fragments and an incoming ligand such as H₂ or CO. In this latter

 (6) Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1989, 111, 6711.
 (7) (a) Heihoff, K.; Braslavsky, S. E.; Schaffner, K. Biochemistry 1986, (1) (a) Heihoff, K.; Braslavsky, S. E.; Schaftner, K. Biochemistry 1986, 26, 6803. (b) Peters, K. S.; Watson, T.; Logan, T. J. Am. Chem. Soc. 1992, 114, 4276. (c) Rudzki, J. E.; Goodman, J. L.; Peters, K. S. J. Am. Chem. Soc. 1985, 107, 7849. (d) Burkey, T. J.; Majewski, M.; Griller, D. J. Am. Chem. Soc. 1986, 108, 2218. (e) Griller, D.; Wayner, D. D. M. Pure Appl. Chem. 1989, 61, 717. (f) Ni, T.; Caldwell, R. A.; Melton, L. A. J. Am. Chem. Soc. 1989, 111, 457. (g) Yang, G. K.; Peters, K. S.; Vaida, V. Chem. Phys. Lett. 1986, 122, 566. (h) Herman, M. S.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 457. (g) Yang, G. K.; Peters, K. S.; Vaida, V. Chem. Phys. Lett. 1986, 122, 566. (h) Herman, M. S.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 4105. (b) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, C, K.; Yang, K.; Peters, K. S.; Vaida, V. Chem. Soc. 1989, 111, 457. (g) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Y. Chem. Soc. 1989, 111, 457. (g) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Y. Chem. Soc. 1989, 111, 9105. (i) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Y. Chem. Soc. 1989, 111, 9105. (i) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Y. Chem. Soc. 1989, 111, 9105. (i) Klassen L K.; Selke, M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Y. Chem. Soc. 1989, 111, 9105. (i) Klassen K.; Setter M.; Strensen A, A.; Yang, G. K.; Peters, K. S.; Vaida, Yang, G. K.; Peters, K. S.; Yang, G. K.; Peters, K.; 1989, 111, 9105. (i) Klassen, J. K.; Selke, M.; Sorensen, A. A.; Yang, G. K.

J. Am. Chem. Soc. 1990, 1/2, 1267.
(8) Yang, G. K.; Vaida, V.; Peters, K. S. Polyhedron 1988, 27, 2181.
(9) Simon, J. D.; Peters, K. S. Chem. Phys. Lett. 1983, 98, 53.
(10) Morse, J., Jr.; Parker, G.; Burkey, T. J. Organometallics 1989, 8, 2721 2471

(11) Burkey, T. J. J. Am. Chem. Soc. 1990, 112, 8329.

⁽¹⁾ Pearson, R. G. Chem. Rev. 1985, 85, 41.

⁽²⁾ Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry; Academic Press: New York, 1979.

⁽³⁾ Martinho Simoes, J. A.; Beauchamp, J. L. Chem. Rev. 1990, 90, 629. (4) Vaska, L.; Werneke, M. F. Trans. N.Y. Acad. Sci., Ser. 2 1971, 33, 70.

^{(5) (}a) Landrum, J. T.; Hoff, C. D. J. Organomet. Chem. 1985, 282, 215. (b) Connor, J. A.; Zafarani-Moattar, M. T.; Bickerton, J.; El Saied, N. I.; Suradi, S.; Carson, R.; El Takhin, G.; Skinner, H. A. Organometallics 1982, 1, 1166.